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Abstract
Many cancer cells express CD47 as a ‘don’t eat me’ signal to mask their presences from immune recognition and destruction. 
Such a signal is transmitted when CD47 binds to the signal regulatory protein-α (SIRPα) on macrophages to cut the phago-
cytic reaction. Most recent studies have focused on developing CD47 blocking agents with different affinities and avidities 
in order to optimize the therapeutic window between efficacy and toxicities involving normal cells expressing CD47. We 
described in this study a new design to fuse one CD47 binding domain of SIRPα with a pharmacokinetics modifying domain 
F8. The resulted single valent long-acting CD47 antagonist SIRPα-F8 was able to bind to CD47 and disrupt CD47-SIRPα 
axis. However, by itself it cannot trigger endocytosis and has no effect on tumor growth. Only when used in combination 
with the anti-CD20 mAbs, there were greatly improved phagocytic activities towards CD20 positive cancer cells. In vivo the 
combination also resulted in better tumor growth inhibition comparing to the vehicle control group. In addition, we showed 
that the F8 fusion bound to hFcRn only inside endosomes at pH 6.0, enabled hFcRn mediated recycling and thus greatly 
extended the circulation half-life in hFcRn knock-in mice. Taken together, the SIRPα-F8 design may suggest a new option 
to improve the therapeutic index of antibody treatment in clinical use towards tumors.
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Abbreviations
AUC​	� Area under the curve
FcRn	� Neonatal Fc receptor
i.t.	� Intra tumoral
M-CSF	� Macrophage colony-stimulating factor
MDS	� Myelodysplastic syndromes
MRT	� Mean residence time
PK	� Pharmacokinetic
RCC​	� Renal cell carcinoma
SEC	� Size exclusion chromatography
SIRPα	� Signal regulatory protein-α
TGI	� Tumor growth inhibition

Introduction

Many therapeutic monoclonal antibody (mAb) drugs have 
been developed to target cancer cell surface antigens and 
exert anti-tumor effects via ADCC effector function. How-
ever, cancer cells may find ways to escape immune destruc-
tion by hijacking endogenous immune checkpoint pathways 
used by the host to maintain self-tolerance [1]. Checkpoint 
inhibitors including anti-CTLA4 and anti-PD-1 have shown 
remarkable clinical success [2–4]. But they were both tar-
geted to T cell mediated adaptive immune responses. There 
should be other immune regulatory pathways implicated 
in cancer development especially concerning the innate 
immunity.

Macrophages are important players in both innate and 
adaptive immunities [5]. The phagocytic activities via the 
‘large eaters’ are regarded as essential anti-tumor immune 
functions. Some cancer cells were found to block mac-
rophage mediated phagocytosis by expressing CD47 as the 
so-called ‘don’t eat me’ signal [6, 7]. CD47 is a ubiquitous 
cell surface marker found on many ‘self’ cells. It inter-
acts with the signal-regulatory protein α (SIRPα) on mac-
rophages, DCs and neutrophils as a major myeloid-specific 
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immune checkpoint [8, 9]. High CD47 expression on cancer 
cells was found to be a major barrier for immune recog-
nition, and the antibody-dependent cellular phagocytosis 
(ADCP) effects in cancer therapy [10–13].

Based on these findings, several groups are develop-
ing CD47 blocking antibodies to disrupt the CD47-SIRPa 
checkpoint axis [14–16]. The most advanced mAb 5F9 had 
shown significant anti-tumor effects in a phase I/II trial but 
there were also reports of hematological toxicities [17]. 
These side effects were thought to be due to the high CD47 
expression levels on red blood cells and related Fc effector 

functions against normal cells. Various other designs includ-
ing SIRPα-Fc and different IgG variants were under evalu-
ation for reduced toxicity and improve efficacy [18–20]. 
We described in this study the design of a single valent, 
long-acting, CD47 antagonist SIRPα-F8. The fusion protein 
contains an IgV domain of SIRPα as the ‘eat me’ module 
and an F8 scFv as the ‘recycle me’ module (Fig. 1d). The 
F8 is a human FcRn binding scFv only inside endosomes 
at pH 6.0. It was used to improve the circulation stabil-
ity and half-life of a GLP1R agonist peptide [21]. The F8 
fusion was found to have a mean residence time of up to 

Fig. 1   SIRPα-F8 fusion protein design and proposed mechanism of 
action. a Gel electrophoresis characterization of the SIRPα-F8 fusion 
proteins. 1: SDS-PAGE; 2: Non-reducing PAGE; 3: Marker PAGE. 
b The design of SIRPα-F8. c The design of SIRPα-Ig. d Schematic 
illustration of the proposed SIRPα-F8 mechanism of action. The ‘Eat 

me’ module was designed to antagonize CD47 on cancer cell and 
block the inhibitory signal towards macrophage. The ‘Recycle me’ 
module was used to enable binding to FcRn at pH 6.0 in the endo-
some to escape lysosome degradation during circulation
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238 h in primates. Therefore we designed the fusion protein 
SIRPα-F8 to explore a new way to adjust the therapeutic 
windows of CD47 blocker and improve the ADCP activities 
of tumor cell opsonizing antibodies.

Materials and methods

Proteins and antibodies

The IgV fragment of human SIRPα (P78324, Glu31-
Ser149) was cloned with a C-terminal poly-histidine tag 
and expressed as SIRPα-His. The SIRPα-F8 fusion gene 
was designed to encode SIRPα IgV connected by a (G4S)3 
linker with the F8 scFv sequence described previously [21]. 
Another two constructs containing a SIRPα with an irrel-
evant scFv (SIRPα-F0), or a SIRPα with the Fc fragment of 
human IgG4 (SIRPα-Ig) were also made. The cDNAs were 
all synthesized by Genscript, cloned into the pcDNA3.1 
vector, and expressed using a HEK293-6E suspension cells 
expression system (ThermoFisher). The secreted proteins 
were harvested from the supernatants and purified using a 
HisTrap FF column on AKTA explorer (GE Healthcare). 
The quality of the fusion proteins was determined by BCA, 
SDS-PAGE and size exclusion chromatography (SEC). 
SIRPα-Ig was biotinylated following the instructions of 
the EZ-Link Sulfo-NHS-SS-Biotin kit (Thermo Scientific, 
21,328). The anti-CD47 blocking antibody B6H12 and non-
blocking antibody 2D3 were purchased from eBioscience. 
The anti-CD20 antibody was kindly provided by Huahai 
Pharmaceutical.

Cell lines

Stably transfected 293TEGFP−hFcRn and 293TEGFP−HLA cell 
lines were made in our laboratory as described previously 
[21]. Human CD47 expressing CHO cells (CHOEGFP−hCD47) 
were obtained by transfecting the hCD47 cloning vec-
tor (Sino Biologicals) and culturing the transfected cells 
in medium containing hygromycin. NHL Raji cells and T 
lymphoblastoid leukemia CCRF-CEM cells were cultured 
using RPMI1640 medium with 10% fetal bovine serum 
(Gibco).

Cell binding assay and FACS analysis

SIRPα-F8 or SIRPα-F0 were added into CHOEGFP−hCD47 or 
Raji cell cultures in 96-well plates at different concentra-
tions. After incubation for 30 min at 4 °C, the cells were 
washed three times by cold PBS, and labeled with APC-
conjugated mAbs against the His tag (1:2,000; Genscript) 
for 30 min at 4 °C. Finally, the cells were washed three more 

times with PBS, and examined for MFI using a BD Celesta 
FACS machine.

The competitive binding of SIRPα-F8 with SIRPα-Ig 
and the CD47 blocking antibody B6H12 were also done. 
The SIRPα-Ig was biotinylated and added into cell culture 
medium containing different concentration of SIRPα-F8. 
After incubation for 30 min, the cells were washed three 
times with cold PBS, labeled with APC conjugated strepta-
vidin (1:5000, BioLegend) for 30 min at 4 °C, washed again 
for three times with PBS, and quantified based on MFI from 
FACS machine (BD FACSCelesta). Similarly, SIRPα-F8 
binding in the presence of CD47 blocking antibodies were 
quantified and the blocking percentages were calculated. 
Data analysis was performed using PRISM Graphpad 
software.

HEK293TEGFP−hFcRn and HEK293TEGFP−HLA cells were 
incubated in a 96-well plate in the presence of increasing 
concentrations of SIRPα-Ig, SIRPα-F8 or SIRPα-F0 at 
pH6.0 or pH7.4. Meanwhile, 250 mg/ml CD47 protein were 
added into each well. Secondary APC conjugated anti-his 
mAb labeling and washing steps were all kept at pH6.0 or 
pH7.4. The resulted cell associated fluorescence intensity 
was analyzed using a BD Celesta FACS machine.

Phagocytosis assay and high‑content cellomics 
imaging analysis

Human monocytes were purified from PBMC with CD14 
microbeads (Miltenyi). Purified CD14+ monocytes were cul-
tured in the presence of macrophage colony-stimulating fac-
tor (M-CSF) for 7–10 days. Monocyte-derived macrophages 
were harvested by dissolving in dissociation buffer for 5 min 
with gentle scraping. They were then labeled with PKH26 
(red) and plated in IMDM containing 10% FBS for 24 h fol-
lowed by serum-free media for another 2 h. 5 × 104 CFSE-
labeled Raji cells or CCRF-CEM cells were added into the 
well with the presence of various protein constructs. All pro-
teins were used at the same concentration of 10 mg/ml. After 
2 h of incubation, the cells were washed 3 times with IMDM 
and fixed with 2% PFA. The wells were scanned using the 
Cellomics high-content Imaging platform. The fluorescence 
images were analyzed using the HCS Studio Cell Analysis 
Software and the pre-established phagocytosis assay param-
eters. The phagocytosis index was determined by calculating 
the number of phagocytes per 100 macrophages as described 
in ref. 11. The data was plotted in Microsoft Office Excel 
and Graphpad Prism 5.

Animal models and animal studies

For setting up of the Raji xenograft model, 3 × 106 Raji cells 
were injected subcutaneously into the right flank of each 
6- to 8-week-old NOD/SCID mouse. After the mice had 
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developed tumors with about 130 mm3 volume, they were 
given three times per week injections of 200 ml vehicle (intra 
tumoral, i.t.), 200 mg SIRPα-F8 fusion protein (i.t.), 200 mg 
anti-CD20 (i.p.), or combination of 200 mg SIRPα-F8 fusion 
protein (i.t.) and 200 mg anti-CD20 (i.p.) for 3 weeks. Tumor 
volume was measured every 3–4 days using the formula 
(length*width2)/2. Tumor growth inhibition (TGI) was cal-
culated as TGI (%) = (Vc−Vt)/(Vc−Vo)*100, where Vc, Vt 
are the median of control and treated groups at the certain 
day of the study and Vo at the start.

Pharmacokinetics studies in hFcRn knock‑in mice

Twelve hFcRn knock-in mice were purchased from Beijing 
Biocytogen Co., Ltd. and acclimated in the SPF animal 
room for 1 week. six mice were given a single intravenous 
bolus injection of 0.5 mg/kg endotoxin-free biotin labeled 
SIRPα-F8 in PBS. Another 6 mice received SIRPα-F0 at 
the same dose. Blood samples were taken at baseline (t0), 
10 min, 1, 4, 8, 24 h, 2, 4, 7, 14, 21 days after injection. 
Quantitative ELISA assays were conducted to determine the 
fusion protein concentration. Each sample was measured 
in three technical replicates. The data were plotted using 
ELISA concentration vs. time. T1/2, AUC​inf, Clearance and 
Mean residence time (MRT) were analyzed based on the 
Linear Log Trapezoidal method, plasma (200–202) model 
(non-compartment model) using WinNonlin (Certara).

Results

Expression and characterization of the SIRPα‑F8 
fusion protein

The fusion protein containing the IgV fragment of human 
SIRPα connected to the F8 scFv and a 6XHis tag was 
made and designated as SIRPα-F8 (Fig. 1b). The proteins 
were expressed in HEK293-6E suspension cells expres-
sion system, purified and characterized. The SDS-PAGE of 
SIRPα-F8 was shown in Fig. 1a. The two bands in Fig. 1a 
suggested there might be two differently glycosylated pro-
teins produced. The molecular weight of the SIRPα-F8 is 45 
kD, which is about one third of that of an IgG.

The binding capability of SIRPα-F8 to CD47 was shown 
using both NHL Raji cells and CHOEGFP−hCD47 cells (Fig. 2a, 
b). The Raji cells are known to be CD47 positive. The 
CHOEGFP−hCD47 cells were obtained after stable transfec-
tion of the EGFP-hCD47 gene. The competition between 
SIRPα-F8 binding to Raji cells and those of SIRPα-Ig or 
CD47 antibody B6H12 were examined in Fig. 2c. In the 
left figure, SIRPα-Ig concentration was fixed at 100 nM and 
SIRPα-F8 were added at concentrations of 30, 10, 3.3 mg/
ml. While SIRPα-F8 as a monomer had lower avidity, but 

it could still compete with SIRPα-Ig at higher doses. The 
right figure showed the effect of CD47 blocking antibody 
B6H12 on SIRPα-F8 binding. The SIRPα-F8 concentration 
was fixed at 560 nM, and the blocking percentages of B6H12 
were reported.

We also examined the binding affinity of SIRPα-F8 
to human FcRn. SIRPα fusion with an irrelevant scFv 
labeled as SIRPα-F0 was included as a negative control. 
293TEGFP−hFcRn and 293TEGFP−HLA cells were previously 
generated in our lab as stable cell lines for the cell surface 
expression of hFcRn and HLA, respectively [21]. Since 
CD47 is also expressed on 293 T cells that might well con-
tribute to the binding of the fusion proteins, binding studies 
in the presence of access CD47-His (250 ug/nl, Novoprotein, 
C321) at pH6.0 were included. As shown in Fig. 2d–f, while 
the fusion proteins had limited binding to 293TEGFP-hFcRn 
at pH 7.4 at concentrations as high as 10 ug/ml (Fig. 2d), 
both SIRPα-F8 and SIRPα-Ig showed dose dependent bind-
ing to 293TEGFP-hFcRn at pH6.0, which was apparently partly 
mediated via CD47 and partly via FcRn (Fig. 2e, Suppl. 
Figure 1). The EC50 for SIRPα-F8 was about 0.95 ug/ml, 
while that of SIRPα-Ig with the natural Fc fragment was 
about 1.11 ug/ml (Fig. 2e). The binding to 293TEGFP-HLA 
cells were used as controls (Fig. 2f).

The antagonist effects of SIRPα‑F8 to cancer cell ‘do 
not eat me’ signal

The effects of SIRPα-F8 antagonizing CD47 on cancer cells 
were evaluated by analyzing phagocytosis events using a 
high-content cellomics system using the co-culture sys-
tem containing CD47 positive T lymphoblastoid leukemia 
CCRF-CEM cells and human monocytes derived-mac-
rophages. CFSE labelled CCRF-CEM cells were cultured 
with PKH26 labelled macrophages in the presence of vari-
ous proteins including SIRPα-F8. The phagocytic activities 
of macrophages engulfing cancer cells were imaged and 
quantified as shown in (Fig. 3a–h).

Both SIPRα-His (Fig. 3e) and SIRPα-F8 (Fig. 3f) were 
not capable of inducing phagocytosis by themselves. But 
SIRPα-Ig resulted in active phagocytosis shown as the heav-
ily swollen macrophages containing engulfed tumor cells 
(Fig. 3d). For comparison, the commercial CD47 blocking 
antibody B6H12 triggered highly significant phagocytosis 
(Fig. 3c), but the non-blocking CD47 antibody 2D3 did not 
(Fig. 3b). These observations confirmed that monomeric 
SIPRα antagonists could only block the “do not eat me” sig-
nal but would not trigger significant effector functions. Simi-
lar observations were obtained in studies using Raji cells 
(Fig. 3i). Only SIRPα-Ig as a dimer triggered strong phago-
cytosis, while all the monomers including SIRPα-F8, F8, 
SIRPα-his and SIRPα-F0 were not effective by themselves.
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However, SIRPα-F8 was able to significantly promote 
phagocytic activities of a therapeutic mAb recognizing 
tumor cell surface antigen. Anti-CD20 mAb is a tumor-
opsonizing antibody that had moderate phagocytic activi-
ties when added alone (Figs. 3i, 4a). But with the addition 
of SIRPα-F8, the blockage of CD47-induced SIRPα signal-
ing resulted in significantly higher ADCP activities of anti-
CD20 as shown in (Fig. 4a).

The tumor inhibition effect of SIRPα‑F8 
in combination with anti‑CD20 mAbs

The SIRPα-F8 activities in vivo were tested in a Raji cell xeno-
graft model in NOD/SCID mice (Fig. 4b). The SIRPα-F8 was 
injected directly into tumor tissues because the F8 domain 

was only effective towards human FcRn. As shown in Fig. 4c, 
SIRPα-F8 alone did not affect tumor growth. But SIRPα-F8 
combined with anti-CD20 mAbs resulted in significant inhibi-
tion of tumor growth comparing to the vehicle control group 
(Fig. 4c). The difference between the combination group and 
the anti-CD20 mAb only group was not as significant. We also 
calculated the TGI index of the different groups (Fig. 4d). The 
combination group was about 70% and the anti-CD20 mAbs 
group was only about 31%.

In vivo pharmacokinetics study of SIRPα fusion 
protein in hFcRn knock‑in mice

In order to evaluate the effect of the F8 domain, we tested 
the pharmacokinetic (PK) behavior of SIRPα-F8 in hFcRn 
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Fig. 2   Characterizations of the binding capabilities of SIRPα-F8 
to CD47 and hFcRn expression cells. a FACS plots of SIRPα-F8 
(111  nM concentration) binding to Raji cells and CHOEGFP−hCD47 
cells. b SIRPα-F8 binding to Raji cells and CHOEGFP−hCD47 cells. 
The EC50 was 39.7 nM and 18.3 nM, respectively. c Characterization 
of SIRPα-F8 binding to Raji cells in the presence of 100 nM bioti-
nylated SIRPα-Ig (left) or various concentrations of CD47 antibody 

B6H12 (right). The concentrations of SIRPα-F8 shown in the left 
figure were 0, 30, 10, 3.3 mg/ml. The concentrations of SIRPα-F8 in 
the right figure was fixed at 560 nM. d SIRPα-F8 and SIRPα-Ig bind-
ing to 293TEGFP−hFcRn cells in the presence of SIRPa-His at pH 7.4. e 
SIRPα-F8 and SIRPα-Ig binding to 293TEGFP−hFcRn cells in the pres-
ence of SIRPa-His at pH 6.0. f SIRPα-F8 and SIRPα-Ig binding to 
293TEGFP−HLA cells in the presence of SIRPa-His at pH = 6.0
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knock-in mice. SIRPα-F0 with the same molecular weight 
was used as the negative control. Proteins were administered 
in a single bolus injection. The plasma concentration fol-
lowing the injection was monitored for 21 days and plotted 
in (Fig. 5a). The calculated PK parameters were showed in 
(Fig. 5b). The MRT of SIRPα-F8 fusion protein was about 
13.3 h in the hFcRn knock-in mouse. This is about 66 times 
longer than that of SIRPα-F0.

Discussion

In recent years, blockers of inhibitory immune checkpoints 
including PD-1 and CTLA-4 led most significant advances 
in anticancer therapies [22–24]. They also prompted the 
evaluation of other immune checkpoints that could be 
targeted. The “do not eat me” signal axis CD47-SIRPα 
has captured substantial attention [6, 12, 13]. Hu5F9-G4 
was the first-in-human CD47 antibody tested in patients 
with relapsed or refractory solid tumors (NCT02216409) 
and AML (NCT02678338) [17], followed by CC-90002 
(NCT02641002) [14] and SRF231 (NCT03512340) [16]. 
Alternatively, CD47 blocking decoy receptors based on 

SIRPα were also under development, including SIRPα-
IgG1 Fc fusion (TTI-621) [25] and SIRPα-hIgG4 Fc 
fusion (ALX148) [18], There were also anti-SIRPα mAbs 
proposed for the potential treatment of various solid 
tumors [26, 27].

While all these CD47 antagonists were aimed to block 
the CD47-SIRPα axis signaling, there have been reports of 
toxicities considering the wide expression of CD47 in nor-
mal “self” cells. The most significant adverse effect using 
Hu5F9-G4 was reported to be anemia [17]. The CC-90002 
clinical program was terminated also because of its narrow 
therapeutic window. TTI-622 switched to the use of IgG4 Fc 
which showed weaker ADCC and ADCP effects [15]. But 
the two binding sites on a single IgG format may still cause 
multivalent CD47 ligation on normal cells. The frequently 
reported side effects were leukopenia and thrombocytope-
nia. Weiskopf et al. suggested monovalent CD47 blockers 
would have lower avidity and could not trigger phagocytic 
activities by themselves [20]. Indeed in our phagocytosis 
assay in (Fig. 3), all the bivalent blockers including CD47 
mAbs and SIRPα-Ig triggered significant phagocytosis by 
themselves, while all the monovalent binders including 
SIRPα-F8, SIRPα-his and SIRPα-F0 had no such effects 

Fig. 3   CCRF- High-content Cellomics analysis of the phagocytic 
activities of human monocytes derived macrophages towards CCRF-
TEM cells (a–h) and Raji cells (i). TEM cells were labeled with 
CFSE (green), and macrophages were labeled with PKH26 (red). 
There were co-cultured in the presence of various proteins at the 
same concentration of 10 mg/ml. Representative images were shown, 
and the arrows were added to mark macrophage engulfment of 

CCRF-CEM cells. a Isotype hIgG4, (b) the 2D3 antibody, (c) B6H12, 
(d) SIRPα-Ig, (e) SIRPα-his, (f) SIRPα-F8, (g) F8. h Summary of 
the phagocytosis index of CCRF-TEM cells in the presence of vari-
ous protein antagonists. i Summary of the phagocytosis index of Raji 
cells in the presence of various protein antagonists. The experiment 
was repeated 3 times. *p < 0.05, **p < 0.01 were determined by t test
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(Fig. 3h–i). Therefore, we think they would be safer when 
exposed systemically in the presence of a deep antigen sink.

But the SIRPα domain by itself is too small and expected 
to have a very short residue life in vivo. Therefore, we 

proposed the fusion construct of SIRPα-F8 that included 
a ‘recycle me’ module in addition to the ‘eat-me’ module 
(Fig. 1d). F8 was previously developed in our lab with 
pH dependent binding affinities to human FcRn and we 

a                                      b

Route Dose TGI (%)

SIRPα-F8 i.t. 10mg/kg 3

α-CD20 i.p. 10mg/kg 31

SIRPα-F8 + α-
CD20

i.t. 10mg/kg
70

i.p. 10mg/kg

0 5 10 15 20
0

500

1000

1500

Vehicle
SIRPA-F8
Anti-CD20
Anti-CD20+SIRPA-F8

Days post treatment

Tu
m

or
 v

ol
um

e 
m

m
3

*
*

*
*

*
*

0 1 10
0

20

40

60

80
0
1
10

anti-CD20 (ug/ml)

***
*** *

******
**

**
***

***
**

**

Ph
ag

oc
yt

os
is

 In
de

x

c                                       d

-14              0  2  4    7  9  11  14 16 18 Days 

Non-Hodgkin lymphoma 
cell engra�ment (s.c.)

Drug injec�ons

α-CD20 (μg/ml)

Vehicle
SIRPα-F8
α-CD20
SIRPα-F8 + α-CD20
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standard deviation. *p < 0.05 determined by t-test between vehicle 
and combination treatment groups. d Summary of the tumor growth 
inhibition (TGI) data at day 13 post treatment
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showed that its circulation half-life in non-human primates 
was longer than 200 h [21]. Indeed as shown in (Fig. 5), 
SIRPα-F8 had a T1/2 of 11.14 h in human FcRn knock-in 
mice, much longer than that of the FcRn unrelated control 
SIRPα-F0. But the Raji cell xenograft mice used in (Fig. 4) 
only expressed murine FcRn that’s not homologous to 
human FcRn. We had to inject SIRPα-F8 intratumorally in 
the in vivo efficacy study in order to compensate for its short 
resident time in mice.

The anti-cancer activities of the SIRPα-F8 fusion pro-
tein was evaluated in combination with the anti-CD20 mAb. 
Most other CD47 blockers under development are also tested 
using similar combination regimen [6, 28]. The anti-tumor 
effects of Rituximab (anti-CD20 Mab) were mostly based 
on effector functions including FcR mediated opsonization 
and phagocytosis. In the presence of SIRPα-F8, signifi-
cantly higher phagocytic activities were achieved by anti-
CD20 in the tumor cell and macrophage co-culture model 
(Fig. 4a). The anti-tumor activities in vivo in the anti-CD20 
and SIRPα-F8 combination group were also higher than the 
anti-CD20 mAb alone group (Fig. 4c, d). In the literature, 
Hu5F9-G4 was under testing for combinations with cetuxi-
mab (NCT02953782), azacytidine (NCT03248479), and 
rituximab (NCT02953509), similar for TTI-621, ALX148, 
and the anti-SIRPα antibody KWAR23. More advanced 
designs including bispecific antibodies targeting both CD47 
and tumor cell antigens including CD19 and Mesothelin 
were also reported [29, 30]. Interestingly it is considered 
highly important to use the CD47 binding arm with lower 
affinity than the tumor antigen binding arm, in order to lower 
the possible side effects on red blood cells and platelets.

In addition to the “eat me” signaling effect, there may 
other mechanism involved in the anti-tumor activities of 
CD47 antagonists. One lab showed that the anti-tumor 
effects required dendritic cells in immune-competent mice, 
and they were abrogated in T cell deficient mice [31]. 
Another study suggested CD47 blockage could induce 
cell apoptosis directly [33]. CD47 blockade could also 
result in sustainable adaptive immune responses [32]. The 
importances of the CD47-SIRPα checkpoint pathway are 
still being explored. They are also under development for 
combinations with PD-1 checkpoint inhibitors includ-
ing Nivolumab (NCT02663518) and Pembrolizumab 
(NCT03013218).

The SIRPα-F8 fusion protein we described weighted only 
45 kD, one-third of that of an IgG, while the in vivo half-life 
and plasma concentrations would be higher. The small size 
would have advantages in distribution and diffusion in solid 
tumor tissues [36], while the improvements of half-life and 
systemic exposure improve the efficacy [34, 35]. Further-
more, the monovalent blocking mode helps to minimize the 
side effects toward normal self-cells. They will be used in 
combination with cancer cell targeted mAbs to ensure the 

specificity of the phagocytic activities. All combined, we 
hope the proposed strategy will have significantly widened 
therapeutic window and enable treatment of solid tumor 
tissues.
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